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Abstract

Evidence suggests that women in academia are hindered by conscious and unconscious

biases, and often feel excluded from formal and informal opportunities for research collabo-

ration. In addition to ensuring fairness and helping to redress gender imbalance in the aca-

demic workforce, increasing women’s access to collaboration could help scientific progress

by drawing on more of the available human capital. Here, we test whether researchers tend

to collaborate with same-gendered colleagues, using more stringent methods and a larger

dataset than in past work. Our results reaffirm that researchers co-publish with colleagues

of the same gender more often than expected by chance, and show that this ‘gender homo-

phily’ is slightly stronger today than it was 10 years ago. Contrary to our expectations, we

found no evidence that homophily is driven mostly by senior academics, and no evidence

that homophily is stronger in fields where women are in the minority. Interestingly, journals

with a high impact factor for their discipline tended to have comparatively low homophily, as

predicted if mixed-gender teams produce better research. We discuss some potential

causes of gender homophily in science.

Introduction

Women are severely underrepresented in many branches of science, technology, engineering,

mathematics, and medicine (STEMM), and face additional challenges and inequities relative

to men [1–5]. On average, women occupy more junior positions [6, 7] with lower salaries [8,

9], receive less grant money [10, 11], are promoted more slowly [12–15], and are allocated

fewer resources [16] and less research funding [17–19]. Experimental evidence suggests that

bias against women plays a major role in generating these differences [20, 21].

Writing papers, networking, and collaboration are all instrumental to research productivity

and academic career advancement [22–25], and dozens of studies have tested for gender differ-

ences in these areas [5, 26–29]. For example, studies have concluded that women tend to be

less involved in international collaboration [19, 28, 30–32], collaborate less within their own

university departments [31], have less prestigious collaborations [33], and fewer collaborations
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in total [34]. These gender differences in collaboration presumably have multiple causes,

which might include implicit and explicit gender bias [20], differential family obligations [33,

35, 36], gender differences in confidence or self-esteem [37], concerns relating to sexual

harassment [38], and unequal access to conferences [39] or travel funds [32].

A high, steadily increasing proportion of research papers is written by more than one

author [3], making collaboration a key predictor of publication output, and thus of career

prospects [40, 41]. Additionally, empirical studies imply that mixed-gender or otherwise

diverse teams produce better outputs on collaborative tasks than less diverse teams [42–48].

For reasons such as these, multiple studies have examined the author lists of published research

articles in order to test for gender differences in collaboration frequency or pattern. To our

knowledge, most or all such studies imply that men co-publish with men, and women with

women, more often than expected if collaborators assort randomly with respect to gender [49–

58]. This non-random assortment is often termed ‘gender homophily’.

We believe that most or all earlier studies of gender homophily were hindered by a largely

unacknowledged statistical issue that we will refer to as the Wahlund effect (Fig 1), by analogy

with the conceptually similar Wahlund effect in population genetics [59]. The Wahlund effect

makes it deceptively difficult to test for gender-based co-author choice simply by counting the

relative number of same- and mixed-gender coauthorships. Essentially, the Wahlund effect

means that whenever coauthorship data are sampled from two or more discrete sets of litera-

ture, which vary in the author gender ratio and which are largely unconnected by collabora-

tion, the number of same-gendered coauthors will be inflated. This can give the impression

that authors preferentially publish with same-gendered colleagues even if no gender prefer-

ences exist, or if the true preference is for opposite-gendered colleagues (‘gender heterophily’).

Fig 1. The Wahlund effect can make it appear as if authors publish with same-gendered colleagues

disproportionately often, even if collaboration is completely random with respect to gender. Here, coloured circles

represent male and female authors, and coauthors are linked with lines. Across the whole set of ten papers, there is an

apparent excess of same-gender collaborations: there are six same-gender papers and only four mixed-gender papers,

which is fewer than the 10 × 2 × 0.5 × 0.5 = 5 mixed-gender papers expected under the null hypothesis that authors

assort randomly. However, within each subset, there is no evidence that authors prefer to publish with same-gendered

individuals (if anything, this small dataset suggests gender heterophily). The Wahlund effect will tend to inflate the

frequency of same-gender coauthorships whenever the data is composed of two or more disconnected subsets of

literature with different author gender ratios; these subsets could be research disciplines, older versus newer papers, or

papers from authors based in different countries. The example countries and disciplines were selected based on data in

[5].

https://doi.org/10.1371/journal.pone.0216128.g001
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For example, a sample of literature containing a mixture of bioinformatics and cell biology

papers will probably contain an excess of mostly-male and mostly-female author lists, simply

because researchers usually collaborate within their own discipline, and because the author

gender ratio is more male-biased in bioinformatics than in cell biology [5].

In the present study, we test whether life sciences researchers tend to co-publish with same-

gendered colleagues, while controlling for the Wahlund effect as strictly as we are able. We use

a recently-published dataset describing the gender of 35.5 million authors from 9.15 million

articles indexed on PubMed [5]. Holman et al. [5] reported large differences in the gender

ratio of authors across research disciplines, journals, countries, and across the years 2002-

2016. We therefore tested for gender homophily while restricting our analysis to particular

journals (a proxy for research specialties), time periods, and countries. We quantified gender

assortment using a metric called α0 [60], which is positive when same-gender authors publish

together more often than expected (gender homophily), negative when opposite-gender

authors publish together more often than expected (heterophily), and equal to zero when

authors assort randomly with respect to gender (see Methods).

Results

Gender homophily by discipline, time period, and authorship position

Fig 2 shows the distribution of α0 estimates in 2015-2016 across all journals for which we

recovered sufficient data, when α0 was calculated for all authors, first authors only, or last

authors only. Most journals had positive values of α0 (77-92%, depending on time period and

author type; S1 Data), and for many of these the false discovery rate (FDR)-corrected p-values

suggested that α0 was significantly greater than zero (1469/2077 journals were significant in

2015-16, and 404/1192 in 2005-6; S1 Data). Only 2/2077 journals had statistically significant

heterophily (i.e. α0 < 0) in 2015-16, and 1/1192 in 2005-6 (S2 Table). The remaining 606 or

787 journals (in 2015 and 2005 respectively) had a value of α0 not significantly different from

zero, consistent with the null hypothesis of random assortment with respect to gender. We

also confirmed that in most journals (S2 Data) and most research disciplines (S3 Data, S1 Fig),

the majority of papers had multiple authors.

α0 was significantly higher in the literature sample from 2015-16 relative to 2005-6, though

the difference in means was small (S2 Fig; Effect of the fixed factor ‘Time period’ in a linear

mixed model of the data for all author positions: Cohen’s d = 0.091±0.04, t953 = 2.42,

p = 0.016).

When comparing pairs of α0 values estimated for the first and last authors for the same jour-

nals, we found that α0 tended to be higher for first authors than for last authors (S3 Fig; Effect

of the fixed factor ‘Authorship position’ in a linear mixed model: Cohen’s d = 0.065±0.02,

t2024 = 4.28, p< 0.0001). This suggests that the gender of the first author was a slightly stronger

predictor of the remaining authors’ genders than the gender of the last author, i.e. the opposite

of what is predicted if senior scientists are causally responsible for homophily.

Variance in homophily between disciplines

Fig 2 illustrates the variance in journal homophily values (α0) across scientific disciplines. All

disciplines had positive mean α0 (averaged over journals), although homophily appeared some-

what stronger in some disciplines than others (e.g. mean α0 was 0.12±0.02 for Urology journals

and 0.03±0.01 for Veterinary Medicine journals; Fig 2, S4 Data). However, there was no formal

evidence for consistent differences in α0 between disciplines: the random factor ‘Discipline’

explained around 1% of the variance in α0 in the two linear mixed models described in the pre-

vious section (see Fig 2 and mixed models in Online Supplementary Material). Thus, the causal
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Fig 2. Of the 2116 journals for which we had adequate data in 2015-2016, 825 showed statistically significant evidence of gender homophily (denoted

by α0 > 0), and 1 showed statistically significant evidence of heterophily (α0 < 0), after false discovery rate correction. In the stacked density plot, the

white area shows the number of journals for which homophily was significantly stronger than expected under the null hypothesis (corrected p< 0.05), while

the blue area shows all the remainder. Patterns were similar whether α0 was calculated for all authors, for first authors only, or for last authors only. Points in

the right panel show α0 for individual journals.

https://doi.org/10.1371/journal.pone.0216128.g002
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mechanisms underlying the observed positive α0 values appear to be similarly strong in all the

disciplines we examined.

There was no indication that journals publishing on a wide range of topics have higher α0

values than more specialised journals due to the Wahlund effect (Fig 1). For example, the jour-

nal category ‘Multidisciplinary’—which includes general interest journals like PLOS ONE,

Nature, Science, and PNAS—did not have markedly elevated α0 (Fig 2). This result suggests

that our estimates of homophily, and estimates from some of the earlier studies of homophily

listed in the Introduction, are probably not markedly inflated by the presence of disparate

research topics (with variable author gender ratios) being published within individual

journals.

Nevertheless, when we calculated α across all non-single-author papers in our entire

15-year PubMed dataset (as before, excluding papers where at least one author’s gender was

unknown; n =>3 million papers, >16 million authors), we found that α was 0.126. This figure

is almost double the median value of α0 for individual journals (Fig 2; α0 = 0.070 for ‘All

authors’), suggesting that lumping together papers from different fields and different time

periods can indeed produce spurious evidence for gender homophily as outlined in Fig 1.

Relationship between gender homophily and number of authors

Papers with two authors had significantly lower (but still positive) α0 values relative to papers

with more than two authors, while papers with 3, 4 or� 5 authors had essentially identical

average α0 values (Fig 3). Specifically, the posterior estimate of mean α0 was 0.014 (95% CIs:

0.002—0.026) for 2-author papers and 0.065 (95% CIs: 0.056—0.074) for 3-author papers (and

roughly the same for 4- and� 5-author papers; Fig 3). One possible explanation for this find-

ing is that 2-authors papers are more likely to have an author list that is evenly split between

career stages (e.g. a postgraduate student and their supervisor), increasing the chance that the

authors are mixed gender (see section ‘Theoretical expectations for α when the gender ratio

differs between career stages’). The result also suggests that the causal mechanisms responsible

for gender homophily are similar in small (e.g. 3-author) and larger (� 5 author) collabora-

tions (and across disciplines where small versus large collaborations are the norm).

Relationship between gender homophily and gender ratio

We next tested whether researchers are more or less likely to publish with same-gendered col-

leagues in strongly gender-biased disciplines (e.g. Surgery or Nursing), relative to disciplines

with a comparatively gender-balanced workforce (e.g. Psychiatry). We found a positive, non-

linear relationship between the gender ratio across all the authors publishing in a particular

journal [5], and the estimated value of α0 for all authors and for first authors, but not last

authors (S4 Fig). Journals with a balanced or female-biased author gender ratio tended to have

higher α0 (i.e. stronger homophily) than journals with a male-biased author gender ratio

(GAM smooth term p = 0.0002 for all-author homophily, p< 0.0001 for first-author homo-

phily, and p = 0.13 for last-author homophily).

Relationship between journal impact factor and gender homophily

We observed a noisy but statistically significant linear relationship between standardised jour-

nal impact factor and α0, such that journals with a high impact factor for their discipline had

weaker gender homophily than did journals with a low impact factor for their discipline (Fig 4;

linear regression: R2 = 0.043, t1415 = -8.0, p< 0.0001). The slope of the regression was −0.012

±0.0015, indicating that increasing the discipline-standardised impact factor by one standard
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deviation is associated with a reduction in α0 of 0.012. The Spearman correlation coefficient

was -0.19 (p< 0.0001).

Analysis accounting for differences in author gender ratio between

countries

When we restricted the analysis by country, we observed statistically significant homophily for

72 of the 325 journal-country combinations tested (64 unique journals and 18 unique coun-

tries), and no significant heterophily (S5 and S6 Figs). Additionally, the values of α0 calculated

for each journal-country combination were only very slightly lower than the α0 values calcu-

lated for the journal as a whole (i.e. when pooling papers from different countries, as was done

to make Fig 2): on average, the difference in α0 was only 0.002 (S7 Fig). These results suggest

that our findings of widespread homophily in the main analysis were not driven solely by a

Wahlund effect resulting from gender differences between countries.

Fig 3. The coefficient of homophily (α0) was slightly less positive when calculated for two-author papers only, relative to

papers with longer author lists. The individual points, whose distribution is summarised by the violin plots, correspond to

individual journals. The larger white points show the mean for each group (and its 95% CIs), as calculated by a Bayesian meta-

regression model accounting for repeated measures of α0 within journals, as well as the precision with which α0 was estimated.

https://doi.org/10.1371/journal.pone.0216128.g003
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Theoretical expectations for α when the gender ratio differs between career

stages

Given that we cannot identify individual researchers or their career stages, we used a simple

model to derive the theoretical expectations for α when the gender ratio differs between career

stages (see Methods). As shown in Fig 5, we predict that α is expected to be non-zero, even if

collaborators are randomly selected with respect to gender, provided that there is a gender gap

between career stages. The extent to which α deviates from zero depends on the relative fre-

quencies of collaboration within and between career stages (rows and columns in Fig 5), and

the size of the gender gap between stages (x- and y-axes in Fig 5). When>50% of coauthor

pairs comprise one early-career and one established researcher, we expect gender heterophily

(α< 0) whenever the gender ratio differs between career stages. Conversely, when >50% of

collaborations are between people at the same career stage, we expect gender homophily (α>
0). In a few parameter spaces (shown in red; Fig 5), α was quite high, and overlapped with the

values that we estimated (Fig 2).

Despite this overlap, Fig 5 suggests that our main conclusions (and those of other studies of

gender homophily) are probably robust to this career stage issue. We only expect strongly

Fig 4. Journal impact factor (expressed relative to the average for the discipline) is negatively correlated with α0.
The relationship is noisy (R2 = 0.043, Spearman correlation = -0.19), but the results indicate that journals with strong

gender homophily tend to have lower impact factors than journals from the same discipline that have weaker

homophily.

https://doi.org/10.1371/journal.pone.0216128.g004
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positive α when A) the gender ratio is highly skewed across career stages (e.g. a 5-fold differ-

ence), and B) collaborations between early and established researchers are very rare (e.g.

<10% of the total). Both of these conditions seem unlikely to be true for most fields: the gender

gap across careers stages is generally less pronounced [1, 5], and it is very common for early-

career researchers to co-publish with an established mentor [61]. However, one can get α> 0

for realistic combinations of parameters, e.g. a moderate shortage of women in senior posi-

tions coupled with a moderate excess of within-career stage collaboration, suggesting this

effect might contribute to some of the homophily observed by this and previous studies.

Lastly, we note that if there is a gender gap between career stages and coauthorships

between early-career and established researchers comprise >50% of the total, then the baseline

expectation for α is actually less than zero (blue areas in Fig 5). Therefore, it is possible that

Fig 5. When the gender ratio of early-career researchers is not equal to the gender ratio among established

researchers, the null expectation for α is not necessarily zero. Specifically, if most collaborations occur between career

stages, there will be an excess of mixed-gender collaborations (α< 0, blue areas), while if most collaborator pairs comprise

two people at the same career stage, there will be an excess of same-gender collaborations (α> 0, red areas). However, the

conditions required for strong gender homophily (i.e. the red areas) are quite restrictive, making it unlikely that this issue

can fully explain the homophily observed in our study. Additionally, in research disciplines where between-career stage

collaboration is common and there is a shortage of women among established researchers (i.e. the blue areas), our study

will underestimate the strength of gender homophily. Contour lines mark increments of 0.1.

https://doi.org/10.1371/journal.pone.0216128.g005
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researchers preferentially assort with same-gendered collaborators even more strongly than

implied by our results, at least for certain journals or research disciplines.

Discussion

We found evidence that researchers work with same-gendered coauthors more often than

expected under the null model, even after implementing stringent controls for Wahlund effects

of the kind illustrated in Fig 1. Our study therefore reaffirms earlier studies’ conclusions [49–

57, 62] using stricter methodology, and generalises their results across the life sciences. Rela-

tively few journals had α0 values below zero, and almost no journals showed statistically signifi-

cant gender heterophily after controlling for multiple testing. The excess of same-gender

coauthorships was quite large: many journals had α0 > 0.1, indicating that the gender ratio of

men’s and women’s coauthors differs by >10% in absolute terms. In relative terms, our find-

ings are even more striking: for example, if men have 20% female coauthors and women have

30% (i.e. α0 = 0.1 in a field with a typical gender ratio [5]), then women publish with women

50% more often than men do.

An important limitation of our study is that we cannot reliably determine the cause(s) of

the observed excess of same-gender coauthorships. As well as the obvious interpretation—con-

scious or unconscious selection of same-gendered collaborators by men, women, or both gen-

ders—our results could be partly explained by uncontrolled Wahlund effects. However, we

suspect the contribution of these uncontrolled artefacts to be minor, for four reasons: we

found positive α0 after controlling for three obvious sources of Wahlund effect; there was no

inflation of α0 in highly multidisciplinary journals relative to specialised journals; restricting

the data by country yielded similar estimates of α0; and our modelling work suggested that dif-

ferences in gender ratio between career stages are unlikely to fully explain our results. On bal-

ance, we believe the data suggest that it is likely that some researchers preferentially select

same-gendered collaborators, although it is difficult to ascertain what proportion of people

show such a preference, or how much the strength of the preference varies between individual

researchers. We also note that even in a world in which everyone selected their collaborators

at random with respect to gender, a high proportion of individual researchers would have

entirely same-gendered collaborators by chance alone (especially in gender-biased disciplines);

thus, individuals who only have same-gendered co-authors are not necessarily doing anything

differently from people with gender-balanced co-authors.

We hypothesised that disciplines with a strongly skewed gender ratio might show the stron-

gest gender homophily, e.g. because being in the minority might increase one’s motivation to

seek out same-gendered colleagues. Contrary to this hypothesis, we found no evidence that

gender homophily is restricted to particular disciplines: α0 was similarly high across the board

(Fig 2). Interestingly, gender homophily was weakest for journals with a male-biased author

gender ratio, and strongest in journals with a female-biased author gender ratio. One possible

reason is that men are more likely to preferentially seek out male collaborators in fields where

men are a minority, relative to the homophily displayed by women in fields where women are

a minority. However, this latter result only has tentative statistical support since our sample

contains few journals in which most authors are women (S4 Fig).

We also found that gender homophily was marginally stronger in 2015-2016 relative to

2005-2006. Although this trend might reflect a change in the gender preferences of researchers

seeking collaborators, there are alternative (and perhaps more likely) explanations. For exam-

ple, this trend might result from the increasing number of women working in senior positions

in STEMM over the past decade [63–65]. As shown in Fig 5, if enough coauthorships are

between junior and senior researchers, a large gender gap between career stages can give the
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appearance of heterophily. As this gender gap between career stages lessens, the observed val-

ues of α0 may increase.

Regarding our finding of weaker homophily among 2-author papers, we suspect that many

2-author teams comprise a student/postdoc and a senior staff member, making these teams

especially likely to be mixed-gender, due to the greater shortage of women among senior

researchers [1, 5]. Assuming this interpretation is correct, this result suggests that our reported

α0 values may underestimate the strength of peoples’ preferences for same-gendered collabora-

tors; essentially, women seeking a senior collaborator could be constrained to work mostly

with men, meaning that people’s ideal and realised gender preferences would be mismatched.

On a related note, Ghiasi et al. [51] argue that women in engineering are “compliant [in repro-

ducing] male-dominated scientific structures” because they do not collaborate often enough

with other women (for reference, Figure 7 in [51] implies that coauthorships involving two

women are c. 30% more frequent than expected under random assortment). By contrast, we

feel that it may be counter-productive to recommend that women collaborate primarily with

other women, e.g. because this constrains women’s options (particularly in fields like the one

studied by Ghiasi et al.—engineering—where 90% of professors are men [1]). Instead, we sug-

gest that researchers of both genders can help to close the gender gap in STEMM. In the con-

text of collaboration, one way to do this is to undertake self-examination to ensure that one is

not inadvertently overlooking or excluding women among potential students and colleagues.

One should also take care to treat male and female collaborators equally, e.g. in terms of train-

ing and mentoring, allocation of work, and how one descibes the collaboration to other people

(e.g. in conference presentations, on the lab website, or in the ‘Author contributions’ section of

a paper). Experimental work suggests that unconscious bias causes people to undervalue wom-

en’s research achievements [20], and a study of author contribution statements found observa-

tional evidence that menial or under-valued tasks are more often assigned to women while

more prestigious tasks are assigned to men [61].

Our study begs two questions: what causes gender homophily in science, and are our results

cause for concern? We believe that the answers to these questions are closely related. For

example, some of the homophily we observed might be caused by women seeking to avoid

harassment or sexism from men [38], which would clearly be very concerning. Additionally,

Sheltzer and Smith [66] concluded that ‘elite’ male academics (defined as recipients of major

honours) have a higher proportion of male students and postdocs than non-elite male academ-

ics. This finding could contribute to the homophily we observed, and is cause for concern

since the results might reflect discrimination against women during hiring [20], or avoidance

by women of elite research groups (e.g. due to gender differences in confidence, or a percep-

tion that some groups are sexist). We also found a little evidence that gender homophily is det-

rimental to research quality, in that high-impact journals tended to have weaker homophily

(though the relationship was very noisy). Assuming that papers published in high-impact jour-

nals are of higher average quality (which is contentious; [67]), our results provide non-experi-

mental support for the hypothesis that mixed-gender teams produce better research than

single-gender teams [42–48]. Another issue is that if many collaborations are between estab-

lished researchers, there will be an excess of male-male collaborations in fields where women

in senior positions are rare; some of the observed homophily might therefore reflect the ele-

vated gender gap among senior researchers.

On the other hand, homophily might have more benign causes. Collaboration is often most

enjoyable and productive when working with like-minded people, who might tend to be same-

gendered more often than not. We also suppose that some people consciously choose to pref-

erentially collaborate with women in order to help close the gender gap in the workforce; this

would create homophily if women adopt this strategy more often than men. In support of this
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interpretation, there is some evidence that women are more likely than men to promote the

work of female colleagues by inviting them to give talks [68, 69]. Given that many collaborative

research projects unfortunately involve a gendered division of labour [61], working with a

same-gendered colleague may provide exposure to new parts of the research process.

Methods

The dataset

We used the dataset of PubMed author lists from Holman et al. [5]. Briefly, that dataset was

created by downloading every article indexed on PubMed and attempting to infer gender from

each authors’ given name using computational methods. Each journal was assigned to one of

107 scientific disciplines, using PubMed’s journal categorisations in the interests of objectivity.

Because the present study focuses on co-authorship, all single-author papers were discarded.

We also discarded all papers for which we could not determine the gender of every author

with�95% certainty, in order to simplify the statistical analysis. To mitigate Wahlund effects

caused by variation in the gender ratio of researchers over time (see below), we only kept

papers with publication dates falling in two one-year time periods, namely 0-1 or 10-11 years

prior to the collection date of the PubMed data (i.e. 20th August 2016). Lastly, we excluded

journals with fewer than 50 suitable papers. Detailed sample size information is given in S1

Table.

Calculating α, the coefficient of homophily

Following Bergstrom et al. [60], we defined the coefficient of homophily as α = p − q, where p
is the probability that a randomly-chosen co-author of a male author is a man and q is the

probability that a randomly-chosen co-author of a female author is a man. Like the Wahlund

effect, α is borrowed from population genetics; for a set of 2-author papers, it is equivalent to

Wright’s coefficient of inbreeding [70]. Mathematical work illustrates that α is closely related

to alternative network-based methods for quantifying homophily [71].

To estimate α for a particular subset of the scientific literature, we estimated p as the average

proportion of men’s co-authors who are men (averaged across all papers with at least one man

author), and q as the average proportion of women’s co-authors who are men (averaged across

all papers with at least one woman author). To estimate the 95% confidence intervals on α for

a given set of n papers, we sampled n papers with replacement 1000 times, estimated α on each

sample, and recorded the 95% quantiles of the resulting 1000 estimates.

As well as calculating α for all authors, we calculated α for first or last authors only. α was

again defined as p − q, but this time p was estimated as the average proportion of male co-

authors on papers with a male first (or last) author, and q was estimated as the average propor-

tion of male co-authors on papers with female first (or last) authors. We did not calculate α for

other authorship positions (e.g. second or third authors) because this would necessitate culling

the dataset to include only papers with a sufficiently long author list, complicating interpreta-

tion of the results.

We also calculated α for papers with 2, 3, 4 or�5 authors, for all journals that had at least

50 suitable papers from 2015-2016 with the specified author list length.

Our test assumes that the expected value of α is zero if authors randomly assort, but for

small datasets this assumption is not always true. Essentially, this issue arises because a person

cannot be their own co-author. In a small dataset comprising m men and f women authors, a

man can co-author with m − 1 men while a woman can co-author with m men. Thus, the null

expectation for α is a negative number—potentially a large one if m and f are very small.
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To control for the fact that the null expectation for α is not zero for small datasets, we

devised an adjusted version of the coefficient of homophily, which we term α0. Every time we

calculated α for a set of papers, we also determined the expected value of α under the null

hypothesis that authors assort randomly with respect to gender. This was accomplished by ran-

domly permuting authors across papers 1000 times, recalculating α, and taking the median.

We then calculated α0 by subtracting the null expectation for α from the observed value. We

also used the null-simulated α values to calculate a two-tailed p-value for the observed value of

α; the p-value was defined as the proportion of null simulations for which |αnull| > |αobs|. We

applied false discovery rate (FDR) correction to each set of p-values to account for multiple

testing [72].

As expected, α0 was usually almost identical to α (S8 Fig), but α was downwardly biased rel-

ative to α0 for the smallest datasets (S9 Fig). Additionally, the correlation between α0 and sam-

ple size was negligible (R2 < 0.01), suggesting that our calculation of α0 effectively removed the

dependence of α on sample size. We therefore used α0 in all analyses.

Minimising the Wahlund effect: Research discipline and time period

To minimise bias in α0 due to the Wahlund effect, we restricted each set of papers to a single

research specialty to the greatest extent allowed by our data. Specifically, we only calculated α0

for individual journals, since papers from the same journal typically focus on closely related

topics. Although some journals, e.g. PLOS ONE, publish research from diverse disciplines with

very different author gender ratios [5], calculating α0 for these highly multidisciplinary jour-

nals is still useful as a contrast. The difference in α0 between highly multidisciplinary and more

specialised journals, e.g. PLOS ONE versus PLOS Computational Biology, gives an estimate of

the extent to which multidisciplinarity within journals inflates α0.
As well as varying between disciplines, the gender ratio of authors has changed markedly

over time [5]. Because the gender ratio was more male-biased in the past, α0 would be inflated

if we calculated it for a sample of papers published over a long enough time frame. To mini-

mise this effect, we only sampled papers from two one-year periods (namely 2005-6 and 2015-

16). The median change per year in % (fe)male authors across journals is below 0.5% [5], and

so restricting our dataset to a single year should prevent temporal changes in gender ratio

from noticeably affecting our estimates of α0.

Minimising the Wahlund effect: Author country of affiliation

A Wahlund effect could arise even if one calculates α0 for a single discipline and time period,

because of variation in the gender ratio of researchers from different countries. For example,

Holman et al. [5] found that PubMed-indexed authors based in Serbia are far more likely to

be women than are authors based in Japan. Therefore, a dataset containing a mix of papers

from teams of authors based in these two countries would contain an excess of same-sex

coauthorships, even if collaboration were random with respect to gender within each

country.

To address this issue, we also analysed every combination of journal and author country of

affiliation for which we had enough data (i.e. 50 or more papers published in 2015-16). For

simplicity, we restricted the dataset to only include papers for which Holman et al. [5] had

identified the country of affiliation for all authors on the paper, and all authors shared the

same country of affiliation. Restricting the dataset in this fashion produced enough data to

measure α0 for 325 combinations of journal and country (median: 70 papers and 273 authors

per combination).
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Calculating standardised journal impact factor

We obtained the 3-year impact factor for each journal from Clarivate Analytics (formerly ISI).

To account for large differences in impact factor between disciplines, we took the the residuals

from a model with log10 impact factor as the response and the research discipline of the journal

as a random effect. Thus, journals with a positive standardised impact factor have a higher

mean number of citations than the average for journals in their discipline. We then used linear

regression and Spearman rank correlation to examine the relationship between α0 and impact

factor across journals.

Statistical analysis

Previous authors [66, 73] have hypothesised that senior scientists preferentially recruit staff

and students of the same gender, and/or that junior researchers preferentially select same-gen-

dered mentors. In the majority of PubMed-indexed disciplines, authorship conventions mean

that the first-listed author is often an early-career researcher, while the author listed last is

more likely to be a senior researcher leading a research team [74]. Assuming that senior

researchers are the main drivers of homophily and that there are enough papers with three or

more authors, we predict that the last author’s gender will be the strongest predictor of the

remaining authors’ genders (i.e. the gender of the last author will be more salient than that of

the first author, or any other authorship position). This is because the first author’s gender

would simply be an imperfect correlate of the true causal effect, while the last author’s gender

would be the causal effect itself.

To test whether α0 for last authors tends to be higher than α0 for first authors for any given

dataset, we used a linear mixed model implemented in the lme4 and lmerTest packages for

R, with authorship position (first or last) as a fixed factor, and journal and research discipline as

crossed random effects. The response variable was α0, and we weighted each observation by

the inverse of the standard error from our estimate of α0, meaning that more accurate mea-

surements of α0 had more influence on the results. We used a similar model to test for a differ-

ence in α0 between the 2005-6 and the 2015-16 datasets, with two differences: we fit year range

as a two-level fixed factor (instead of authorship position), and we used α0 estimated for all

authors (not first/last authors) as the response variable.

The relationship between the gender ratio of authors publishing in a journal and its α0 value

appeared nonlinear (S4 Fig). We therefore fit a generalised additive model with thin plate

regression spline smoothing, implemented using the mgcv package for R.

To model the relationship between α0 and the number of authors on the paper, we used a

meta-regression model implemented in the R package brms [75]. The model incorporated the

standard error associated with each estimate of α0, had author number as a fixed effect, and

journal as a random intercept (to control for repeated measures of each journal). We also fit a

random slope of author number within journal, thereby allowing the response to author num-

ber to vary between journals. We used the default (weak) priors. The full output of this model

can be viewed in the Online Supplementary Material.

Theoretical expectations for α when the gender ratio differs between career

stages

In most STEMM disciplines, the gender ratio is more skewed among established researchers

relative to early-career researchers, due both to women leaving STEMM careers at greater

rates (the ‘leaky pipeline’), and to historical shortages of women studying STEMM subjects at

university (‘demographic inertia’) [1, 5]. We hypothesised that this difference in gender ratio
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between career stages could potentially create both Wahlund effects and ‘reverse’ Wahlund

effects. For example, imagine that the majority of collaborations in a particular field are

between students and professors, and that the gender ratio differs between career stages: we

would then see an excess of mixed-gender coauthorships (heterophily, α< 0), even if gender

has no direct, causal effect on the choice of coauthors. Similarly, a hypothetical field in which

students work only with students, and professors with professors, would have apparent gender

homophily (α> 0).

We can think of no tractable method of controlling for this issue using our dataset, which

contains no reliable information on career stage. Therefore, we instead decided to derive theo-

retical expectations for α when there is a difference in gender ratio across career stages, in

order to determine if and how this effect should alter our inferences. For simplicity, our calcu-

lations assume there are only two career stages (‘early-career’ and ‘established’), though we

expect that the general conclusions would also apply to a multi-tier career ladder. Under the

null model that gender has no causal effect on collaboration, we calculated α for various com-

binations of the four free parameters in our simple model. These parameters are: the gender

ratio among early-career researchers (x-axis of Fig 5), the gender ratio among established

researchers (y-axis of Fig 5), the frequency of within- versus between career stage collaborator

pairs (rows in Fig 5), and lastly the frequency of within-stage collaborations that are between

two early-career researchers as opposed to two late-career researchers (columns in Fig 5).

When these four parameters are specified, one can easily calculate the relative frequencies of

collaborator pairs that involve two men, two women, or a man and a woman. In short, if we

have specified the frequency of women at both career stages, as well as the frequency of the

three possible types of collaboration with respect to career stage (early-early, early-established,

and established-established), then we can calculate the frequency of collaborators pairs com-

prising two women, or a woman and a man, and thus calcualte α (see the Online Supplemen-

tary Material for the annotated R code).

Supporting information

S1 Fig. Plot showing the percentage of papers that have 1, 2, 3, 4, or�5 authors for each dis-

cipline in the dataset of Holman et al. (2018). This information can also be found in S3 Data.

(PDF)

S2 Fig. Histogram showing the distribution of differences in α0 between the 2015-16 and

2005-6 samples, where positive numbers indicate an increase in α0 with time. The mean is

slightly positive (i.e. 0.004), indicating a mild increase in average α0 with time.

(PDF)

S3 Fig. Histogram showing the difference between α0 calculated for first and last authors.

Positive values mean that α0 was higher when calculated for first authors, and negative values

mean α0 was higher when calculated for last authors. The mean is very slightly higher than

zero, indicating that α0 tends to be higher for first authors.

(PDF)

S4 Fig. There is a weakly positive, non-linear relationship between the gender ratio of

authors publishing in a journal, and the coefficient of homophily (α0). Specifically, journals

with 50% women authors or higher tended to have more same-sex coauthorships than did

journals in which most authors are men. This relationship held whether α0 was calculated for

all authors or first authors only, but not for last authors only. A negative value on the x-axis

denotes an excess of men authors, a positive value denotes an excess of women authors, and

zero denotes gender parity (i.e. equal numbers of male and female authors). The lines were
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fitted using generalised additive models with the smoothing parameter k set to 3.

(PDF)

S5 Fig. Histogram of α0 for 325 unique combinations of journal and country, using data

from August 2015—August 2016. The white areas denote combinations for which α0 differs

significantly from zero (p< 0.05, following false discovery rate correction).

(PDF)

S6 Fig. Plot showing the 68 combinations of journal and author country of affiliation for

which α0 is significantly higher than expected.

(PDF)

S7 Fig. Histogram showing the estimated degree to which α0 is inflated by inter-country

differences in author gender ratio, across the 285 journals for which we had adequate data

after restricting the analysis by country. The average inflation in α0 is negligible, suggesting

that Wahlund effects resulting from inter-country differences have a negligible effect on our

estimates of gender homophily.

(PDF)

S8 Fig. There is a very strong correlation between the values of α and α0 calculated for each

journal, though in a handful of cases the difference is considerable. The deviation between

α and α0 is greatest for journals for which there is a small sample size (see S9 Fig).

(PDF)

S9 Fig. For journals for which we recovered a small number of papers (<100), the unad-

justed metric α was downwardly biased. This fits our expectations: because researchers can-

not be their own co-authors, small datasets will tend to produce negative estimates of α even if

authors assort randomly with respect to gender (see main text). This suggests that α0 is a better

measure of homophily and heterophily, though the improvement is trivial in large enough

samples.

(PDF)

S1 Table. Sample sizes for the two datasets, which comprise papers published in the time-

frames August 2005—August 2006, and August 2015—August 2016.

(PDF)

S2 Table. Number of journals showing statistically significant homophily or heterophily,

in two one-year periods. The significance threshold was p< 0.05, and p-values were adjusted

using Benjamini-Hochberg false discovery rate correction. Note that the power of our test is

lower for the 2005-2006 data because fewer papers were recovered per journal: thus, it is not

meaningful to compare the % significant journals (i.e. 11% vs 24%) between the two time peri-

ods.

(PDF)

S1 Data. This spreadsheet shows the α values calculated for each journal, in the 2005 and

2015 samples, and for each type of author (all authors, first authors, and last authors). The

tables gives the impact factor of each journal, the sample size, α and α0 and their 95% CIs, and

the p-value from a 2-tailed test evaluating the null hypothesis that α is zero (both raw and

FDR-corrected p-values are shown).

(CSV)

S2 Data. This file gives the number and percentage of papers that have 1, 2, 3, 4, or�5

authors for each journal in the dataset of Holman et al. (2018) PLOS Biology. Note that the
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sample sizes include papers for which the gender of one or more authors was not determined

by Holman et al.

(CSV)

S3 Data. This file gives the number and percentage of papers that have 1, 2, 3, 4, or�5

authors for each discipline in the dataset of Holman et al. (2018) PLOS Biology. Note that

the sample sizes include papers for which the gender of one or more authors was not deter-

mined by Holman et al.

(CSV)

S4 Data. The table shows the distribution of the α0 values across journals, split by the

research discipline. The gender ratio column shows the percentage of women authors in the

sample used to calculate α0, across all authorship positions. In the last two columns, the num-

bers outside parentheses give the number of journals that deviate statistically significantly

from zero, while the numbers inside parentheses give the number that remain significant after

false discovery rate correction.

(CSV)
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